How Recommendations can Help Retailers Build a Deeper Relationship With Their Customers

Online retail is a competitive scene. To offer simple product recommendations — such as “customers who bought this item also bought this” — is simply not going to cut it anymore. Customer expectations are at an all-time high, and if you are unable to deliver in line with the expectation, chances are likely someone else will. 

Recommendation is a never-ending battle for accuracy and timeliness. At its best, it delivers a new experience for the customer; at its worst, it recommends irrelevant products or, even worse, things the customer has already purchased. 

Recommendations not only generate more sales but also help retailers build a deeper relationship with their customers by giving them a sense of being understood and properly served. 

A Gartner survey found that half of consumers would unsubscribe from company communications due to poor marketing personalization. On a more positive note, 82% of consumers admit to having been influenced by a personalized shopping recommendation. The problem is, personalization is not easy. Retailers know they have to do it and usually have some systems in place to deliver it, but according to Gartner, 74% of marketing leaders report struggling to scale up their personalization efforts. 


Faced with the need for accuracy, speed and scale, marketing leaders have turned to graph analytics to power up their recommendation engines.

Getting Closer to Your Customers 

Graph analytics are widely used in social media as a technique to provide contextually relevant recommendations. The data points are people and the relationships are ‘friends’ or ‘colleagues.’ Using this simple model, Facebook and LinkedIn build very accurate representations of social networks and analyze the data to promote further links. 

Graph analytics involves running mathematical algorithms on a graph database, which differs fundamentally from the traditional relational database that we are all familiar with. Rather than storing data in rows, columns and tables, graph databases are built on a network of ‘vertices’ and ‘edges,’ with vertices being individual data points and edges being the relationships between them. In other words, it focuses on the relationships in the data to enhance recommendations and next best action.

Product recommendation is an ideal use case for graph analytics; it too is fundamentally a relationship problem. How is this customer related to this product — have they browsed it, bought it  or bought similar products? How do they relate to other customers, and what have those customers purchased? What is their demographic profile and how are those demographic categories linked to buying behavior? 

Strategies for generating tailored recommendations take many forms, from the simple to the complex, with varying levels of effectiveness:

Basic recommendation: delivers a set of results based on search terms. This is a search-to-things relationship, for example, customer searches for “children’s shoes.”

Content filtering: matches product attributes with customer attributes and the attributes of things they have previously purchased. For instance, based on your previous purchase of X, we think you might like A, B or C. This is a thing-to-thing relationship.

Collaborative filtering: matches customers with other customers who bought similar products. For instance, people who bought this item also bought this. This is a thing-to-people-to-things relationship.

Intelligent or hybrid search result: delivers basic search results plus collaborative filtering to prioritize items purchased by similar individuals. This is a search-to-people-to-things relationship.

Branching hybrid recommendation: after a user selects a product from a list of search results, this delivers related items using content filtering to constrain the list and collaborative filtering to prioritize it. For instance, people who looked at this item also looked at this item. This is a thing-to-thing-to-people-to-things relationship.

More complex variations can be created by chaining these strategies together or adding additional factors such as weather forecasts, upcoming holidays and personal data including birthdays, gender and age. 

Each additional step that you add to the chain is known as a ‘hop.’ Simple searches involve one or two hops, while the most complex searches can easily increase to 10 or 15 hops. Often new patterns and insights are more than one hop away — this is the insight and creates competitive advantage.  Legacy relational databases struggle to cope with more than one or two hops, while graph databases built upon an MPP architecture easily scale to 15 hops or more. 

Traditional recommendation engines built on relational databases perform global statistical analysis offline, using snapshots of data that may be days old. But graph databases can perform deep analysis and deliver hyper-personalized results in milliseconds. 

Kickdynamic uses graph analytics to supercharge its email marketing platform, used by more than 200 leading brands to boost customer engagement and sales. Using graph, it pulls CRM data from multiple sources, connects or hops through more than 10 levels of data and constructs millions of personalized customer emails for its clients based on site browsing history, similarities across products and users, and cross-user behavioral patterns. 

The ability to process queries in real time allows it to deliver updated pricing and product information at every email opening. Using customer preferences and product availability, it captures key ‘business moments’ and delivers targeted recommendations — all in less time than it takes the customer to read the subject line. 

The result is increased customer engagement, brand loyalty and sales conversions, according to Kickdynamic’s Chief Product Officer Gabrielle Corti. 

Customers are unique, varied and complex, which can be difficult for businesses to understand, especially at scale. But with graph analytics, retailers can convert that weakness into a strength and deliver, on the fly, offers and recommendations that truly speak to them.

Todd Blaschka is the Chief Operating Officer at leading graph analytics platform TigerGraph and a veteran in the enterprise software industry. He is passionate about creating entirely new segments in data, analytics and AI, with the distinction of establishing graph analytics as a Gartner Top 10 Data & Analytics trend two years in a row. By fervently focusing on critical industry and customer challenges, the companies under Blaschka’s leadership have delivered significant quantifiable results to the largest brands in the world through channel and solution sales approach. Prior to TigerGraph, Blaschka led go-to-market and customer experience functions at Clustrix (acquired by MariaDB), Dataguise and IBM.

Feature Your Byline

Submit an Executive ViewPoints.

Featured Event

Join the retail community as we come together for three days of strategic sessions, meaningful off-site networking events and interactive learning experiences.


Access The Media Kit


Access Our Editorial Calendar

If you are downloading this on behalf of a client, please provide the company name and website information below: